Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958690

RESUMEN

Thermotropic mesogens typically exist as liquid crystals (LCs) in a narrow region of high temperatures, making lowering their melting point with the temperature expansion of the mesophase state an urgent task. Para-substituted benzoic acids can form LCs through noncovalent dimerization into homodimers via hydrogen bonds, whose strength and, consequently, the temperature region of the mesophase state can be potentially altered by creating asymmetric heterodimers from different acids. This work investigates equimolar blends of p-n-alkylbenzoic (kBA, where k is the number of carbon atoms in the alkyl radical) and p-n-alkyloxybenzoic (kOBA) acids by calorimetry and viscometry to establish their phase transitions and regions of mesophase existence. Non-symmetric dimerization of acids leads to the extension of the nematic state region towards low temperatures and the appearance of new monotropic and enantiotropic phase transitions in several cases. Moreover, the crystal-nematic and nematic-isotropic phase changes have a two-step character for some acid blends, suggesting the formation of symmetric and asymmetric associates from heterodimers. The mixing of 6BA and 8OBA most strongly extends the region of the nematic state towards low temperatures (from 95-114 °C and 108-147 °C for initial homodimers, respectively, to 57-133 °C for the resulting heterodimer), whereas the combination of 4OBA and 5OBA gives the most extended high-temperature nematic phase (up to 156 °C) and that of 6BA and 9OBA (or 12OBA) provides the existence of a smectic phase at the lowest temperatures (down to 51 °C).


Asunto(s)
Cristales Líquidos , Cristales Líquidos/química , Calorimetría , Temperatura , Transición de Fase , Reología
2.
Polymers (Basel) ; 15(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37299378

RESUMEN

This study presents preparing and characterization of polyacrylonitrile (PAN) fibers containing various content of tetraethoxysilane (TEOS) incorporated via mutual spinning solution or emulsion using wet and mechanotropic spinning methods. It was shown that the presence of TEOS in dopes does not affect their rheological properties. The coagulation kinetics of complex PAN solution was investigated by optical methods on the solution drop. It was shown that during the interdiffusion process phase separation occurs and TEOS droplets form and move in the middle of the dope's drop. Mechanotropic spinning induces the TEOS droplets to move to the fiber periphery. The morphology and structure of the fibers obtained were investigated by scanning and transmission electron microscopy, as well as X-ray diffraction methods. It was shown that during fiber spinning stages the transformation of the TEOS drops into solid silica particles takes place as a result of hydrolytic polycondensation. This process can be characterized as the sol-gel synthesis. The formation of nano-sized (3-30 nm) silica particles proceeds without particles aggregation, but in a mode of the distribution gradient along the fiber cross-section leading to the accumulation of the silica particles either in the fiber center (wet spinning) or in the fiber periphery (mechanotropic spinning). The prepared composite fibers were carbonized and according to XRD analysis of carbon fibers, the clear peaks corresponding to SiC were observed. These findings indicate the useful role of TEOS as a precursor agent for both, silica in PAN fibers and silicon carbide in carbon fibers that has potential applications in some advanced materials with high thermal properties.

3.
Polymers (Basel) ; 14(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36365543

RESUMEN

The fumed silica influence on the morphology, coagulation processes, and rheological properties of suspensions in dimethyl sulfoxide (DMSO) and polyacrylonitrile (PAN)-DMSO solutions has been studied for the production of composite films and fibers. It has been shown that silica-DMSO concentrated suspensions (24 wt%) form a weak gel with a yield point of about 200 Pa. At concentrations of ~5 wt% and above the dispersions, depending on the shear stress, are pseudoplastic or dilatant liquids. It has been found that the silica addition method into a PAN solution has a significant impact on the aggregates dispersibility and the rheological behavior of the obtained systems. A thixotropy appearance and a sharp increase in the relaxation time were observed for PAN solutions at a SiO2 content of more than 3-5 wt%, which indicates the formation of structures with a gel-like rheological behavior. Upon reaching the critical stress their destruction takes place and the system starts to behave like a viscoelastic liquid. Two spinning methods have been used for preparing fibers: standard wet and mechanotropic. By the mechanotropic method it is possible to achieve a higher draw ratio at spinning and to obtain fibers with better mechanical properties. It is possible to spin fibers from PAN solutions containing up to 15 wt% of silica per polymer with a tensile strength up to 600 MPa.

4.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36365642

RESUMEN

AB-polybenzimidazole (ABPBI) dissolution kinetics in an eco-friendly complex acid-free solvent based on dimethyl sulfoxide (DMSO), methanol and KOH, and the rheological behavior of their solutions are investigated. The optimal component ratio of solvent providing the complete ABPBI dissolution is determined. Methanol containing dissolved KOH contributes to the creation of a single-phase superbasic medium, which accelerates and improves the polymer solubility in a mixture with DMSO, significantly reducing the viscoelasticity of the resulting solution. The optimum methanol content is up to 60 wt.% related to DMSO. The polymer dissolution rate increases by 5 times in this composition. It found the polymer concentration of 9% is close to the dissolution limit due to the strong solution structuring, which is probably associated with an increase in the amount of water released during the KOH-methanol-DMSO interactions. As a result, the conditions for obtaining high concentrated solutions in a complex, mainly organic solvent for fiber spinning are developed. The viscoelastic properties of solutions are measured in the concentration range of 1-9% at temperatures of 20-50 °C. The flow activation energy for 7 and 9% solutions decreases by 1.5 and 2.3 times, respectively, as the content of methanol in the complex solvent increases from 10 to 60%.

5.
Materials (Basel) ; 15(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35160753

RESUMEN

A series of model experiments were carried out on drops of poly-(o-aminophenylene)naphthoylenimide (PANI-O) solutions in N-methyl-2-pyrrolidone (NMP) surrounded by a coagulant of different compositions as starting points of defect-free fibers spinning by the wet method. An influence of compositions of dopes and multicomponent coagulants on the diffusion kinetics and drop morphology during coagulation has been investigated. It is shown that the defining parameters of the coagulation process are viscoelastic properties of the polymer solution and the diffusion activity of the coagulant, meaning not only the rate of coagulation but also the presence/absence of macro defects in the resulting fiber. The optimal morphology of as-spun fibers is obtained by coagulation of solution in a three-component mixture containing solvent and two precipitants of different activity (water and ethanol). The chosen coagulating mixture was used for the fiber spinning of PANI-O with different molecular weights dopes, and fibers with sufficiently high strength (~250 MPa), moduli (~2.1 MPa), and elongation at break (50%) were obtained.

6.
Materials (Basel) ; 16(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36614445

RESUMEN

The influence of alkyl acrylate comonomers in the rank of methyl- (MA), butyl- (BA), ethylhexyl- (EGA), and lauryl- (LA) in ternary copolymers based on acrylonitrile, alkyl acrylate and acrylamide (PAN-alkyl acrylate) on their solutions rheological behavior in dimethyl sulfoxide (DMSO), and mechanical properties of the spun fibers have been investigated. To reveal the role of molecular weight, two series of copolymers with molecular weights of ~50 and 150 kg/mol have been studied. It was shown that the nature of the alkyl acrylate does not significantly affect the rheological behavior of their solutions regardless of the length of the alkyl substituent and the content of the alkyl acrylate in copolymers. An exception is the high-molecular PAN-LA, which is characterized by a non-Newtonian behavior at lower concentrations. Two series of fibers were spun from the characterized ranks of low and high-molecular-weight copolymer solutions. For all copolymers, a 2.5-5-fold increase in the strength and elastic modulus of the fiber was found with an increase in Mw. It has been shown that PAN-MA and PAN-LA fibers have a tensile strength of 800 MPa that is 1.5-3 times higher than that of other copolymers spun in the same conditions.

7.
Polymers (Basel) ; 12(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114143

RESUMEN

The effect of temperature and storage time at a constant temperature on the stability of poly-(o-aminophenylene)naphthoylenimide solutions in N-methylpyrrolidone has been analyzed using rotational rheometry. A temperature-time window beyond which an irreversible change in the viscoelastic properties of solutions due to cumulative reactions of continuous polymerization and possible intramolecular cyclization has been detected. The influence of polymer concentration and its molecular weight on the rheological properties of solutions determining the choice of methods for their processing into fibers and films has been investigated. The effect of non-solvents (water and ethanol) additives on the rheological properties of solutions and the kinetics of their coagulation has been studied. Dosed addition of non-solvent into the solution promotes a significant increase in the viscoelasticity up to gelation and phase separation. Non-solvent presence in the polymer solutions reduces the activity of the solvent, accelerates the movement of the diffusion front at coagulation, and minimizes the number of macro defects. The combination of parameters under investigation renders it possible for the first time to develop new principles modifying dopes for wet spinning into aqueous or ethanol coagulation bath and finally to obtain a heat- and fire-resistant polynaphthoylenebenzimidazole fibers.

8.
Materials (Basel) ; 13(16)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764383

RESUMEN

The influence of introducing acrylic acid (AA) into the reaction mixture with acrylonitrile at the synthesis of copolymers by free-radical polymerization (FRP) and radical polymerization with reversible addition-fragmentation chain transfer (RAFT) on the rheological properties of their solutions in dimethyl sulfoxide, as well as on the capability to spin fibers by the mechanotropic method, is analyzed. The influence of AA dosing conditions on the rheological properties of the solutions in the concentration range above the crossover point was not revealed. In the case of RAFT synthesis, the rheological properties differ distinctively in the high concentration region that is expressed by unusual viscoelastic characteristics. Dilute solution viscometry revealed the influence of the comonomer loading order on the interaction intensity of the copolymer macromolecules with a solvent, which is more pronounced for samples synthesized by FRP and can be associated with the copolymers' molecular structure. Fiber spinning from solutions of polyacrylonitrile and its copolymers (PAN) synthesized by the RAFT method was not able to achieve a high degree of orientation drawing, while for polymers with a wider molecular weight distribution synthesized by FRP, it was possible to realize large stretches, which led to high-quality fibers with strength values up to 640 MPa and elongation at a break of 20%.

9.
Polymers (Basel) ; 12(4)2020 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-32260347

RESUMEN

The effect of additives of polydimethylsiloxanes (PDMS) with various molecular weights on the morphology and rheological behavior of polyacrylonitrile (PAN) solutions in dimethyl sulfoxide has been analyzed. It was shown that only partial compatibility of the PDMS with the lowest molecular weight member of the homologous series studied-hexamethyldisiloxane-with PAN solution takes place. All other PDMS samples form emulsions with PAN solutions. The coalescence rate of PDMS drops depends on the viscosity ratio of the disperse phase and the continuous medium, which determines both the duration of dispersion preparation and the conditions for processing emulsions into fibers and films. An anomalous change in viscosity for a series of emulsions with different concentrations of additives, associated with the slippage, was detected. The relaxation properties of emulsions "feel" macro-phase separation. Modeling of the wet spinning process has shown that the morphology of the deposited solution drop reflects the movement of the diffusion front, leading to the gathering droplets in the center of the deposited formulation drop or to their localization in a certain arrangement. It was shown that the emulsion jets upon stretching undergo phase separation.

10.
Materials (Basel) ; 12(21)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731389

RESUMEN

A new approach to the synthesis of polynaphthoylenebenzimidazoles and heat resistant fiber spinning has been developed using an environmentally friendly and energy efficient method, which operates with solutions of pre-polymers based on 3,3',4,4'-tetraaminodiphenyl ether and 1,4,5,8-naphthalenetetracarboxylic acid dianhydride in N-methylpyrrolidone. Rheological properties of polymer reaction solutions and appropriate coagulant mixtures were investigated for further wet spinning process. The coagulation process was investigated through microscopic observation of solution droplets which imitate jet/fiber cross section surrounded with coagulants of different composition. For the case of the most optimal viscoelastic properties of dopes the best coagulant was found to be a ternary mixture ethanol/water/NMP (20/10/70). Fibers were prepared through the wet spinning from pre-polymers of various molecular weight characterized by intrinsic viscosity. As a result, complex yarns were spun, and their morphology was characterized and mechanical properties were measured. The strength of ~300 MPa and elastic modulus of ~2 GPa and elongation at break of ~20% were reached for the best fibers at average diameter of ~20 µm. After heat treatment "Lola-M" fibers do not burn and do not support combustion in open flame.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...